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Outline

* Introduction: Brief introduction to our research in the field of quantum information and quantum
computing for complex chemical systems.

* QML Model: Quantum machine learning and the Restricted Boltzmann Machine (RBM);

Quantum algorithm that can filter any energy eigenstate of the system;

Quantum circuit; implement our algorithm on quantum simulators and actual IBM-Q

Applications: Electronic Structure of Molecules: Simple molecules such as Hz, LiH, and Hz0
Electronic Structure Calculations of 2D Materials: Hexagonal Boron Nitride and Graphene

Molybdenum Disulfide MoS: and Tungsten disulfide WS,
* Finite Size Scaling and Quantum Phase Transitions: Quantum Rabi Model

(Two-level system interacting with an optical field )

* Future Work: QML for open quantum dynamics, quantum state tomography, quantum thermodynamics,
guantum optimization to solve advanced inverse design problems for science and engineering applications and
implementations on quantum devices with reduction of the algorithm cost.
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Our Research in the Field of
Quantum Information and
Quantum Computing

https://arxiv.org/search/?searchtype=author&query=Sabre+Kais

Zheng Huang
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Quantum Phase Estimation Algorithm

Is a quantum algorithm to estimate the phase (or eigenvalue) of an eigenvector of a unitary operator.
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Initially introduced by Alexei Kitaev in 1995 and Seth Lloyd, Phys. Rev. Lett. 83, 5162 ( 1999 )
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Quantum Phase Estimation Algorithm

Simulated guantum computation of molecular energies A Aspuru-Guzik, AD Dutol, PJ Love,
M Head-Gordon, Science 309 (5741), 1704-1707 (2005)

Phys. Chem. Chem. Phys. 10, 5388-5393 (2008)

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics

Quantum algorithm for obtaining the energy spectrum of molecular
systems

Hefeng Wang,? Sabre Kais,** Alan Aspuru-Guzik? and Mark R. Hoffmann®

Ph.D. 2004-2008; Now: School of Physics at Xi’an Jiaotong University, China

We have presented a quantum algorithm to obtain the energy spectrum of molecular
systems based on the multiconfigurational self-consistent field (MCSCF) wave
function. We demonstrated that such an algorithm can be used to obtain the energy
spectrum of the water molecule.
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Quantum Classical Hybrid Algorithm (2011)

The circuit design for the unitary propagator for the
Hydrogen Molecule, H2
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THE JOURNAL OF CHEMICAL PHYSICS 134, 144112 (2011)
“Decomposition of unitary matrices for finding quantum circuits: Application
to molecular Hamiltonians”

Anmer Daskin and Sabre Kais



Quantum Classical Hybrid Algorithm (2011)
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Universal programmable quantum circuit schemes to emulate an operator

Anmer Daskin," Ananth Grama,' Giorgos Kollias," and Sabre Kais?®2
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Summary

We have theoretical and experimental results for

Simple Molecules: H2, H20, LiH, BeHz2, He2,... H12
(2-12 qubits)
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What is Next?

Challenges: Hardware

® Quantum Volume: Circuit width ( # qubits ); circuit depth (#
guantum gates ) and architecture of the device (connectivity of the
qubits)

® quantum error corrections (Fault-Tolerant Quantum Computer)

Hardware improvements alone is not enough!

We need to design efficient programmable
qguantum circuits for molecular Hamiltonians

e Quantum Classical Hybrid Algorithms

e Adiabatic Quantum Algorithms

e Quantum Machine Learning Algorithms

* Developing Algorithms in Qudit-Space

e Programmable Quantum Simulator



https://quantum-journal.org/papers/q-2021-02-04-392/

Phase Estimation with Qudits
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FULL PAPER ARVANSS

S
www.advquantumtech.com

Quantum Phase Estimation with Time-Frequency Qudits
in a Single Photon

Hsuan-Hao Lu, Zixuan Hu, Mohammed Saleh Alshaykh, Alexandria Jeanine Moore,
Yuchen Wang, Poolad Imany, Andrew Marc \XWeiner,* and Sabre Kais*
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Qudit Quantum Gates

The Z gate and X gate are generalized to d-dimension
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Review Article
“Qudits and High-Dimensional Quantum Computing”
Y. Wang, Z. Hu; Barry Sanders, Sabre Kais,
Frontiers in Physics (2020)

Barry Sanders




PHYSICAL CHEMISTRY S ——
J. Phys. Chem. B 2018, 122, 3384—3395

Electronic Structure Calculations and the Ising Hamiltonian
Rongxin Xia, Teng Bian, and Sabre Kais#* %
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Quantum Criticality and Phase Transitions

Electronic Structure Ising Model

Quantum Mechanics Statistical Mechanics

LR j i,j =electrons (N)
AB=nuclei (M)

Quantum critical phenomena * * ‘
and stability of atomic and

molecular ions

S Kais, P Serra ‘ * ‘ ‘
International Reviews

IN Physical Chemistry
19, 97 (2000) * *

Symmetry Breaking &= | Phase Transitions
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Quantum Machine-Learning

RE ‘ / IE‘ a / 14 september 2017 | VOL 549 | NA T U RE |

doi:10.1038/nature23474

Quantum machine learning

Jacob Biamonte!?, Peter Wittek?, Nicola Pancotti*, Patrick Rebentrost®, Nathan Wiebe® & Seth Lloyd’

Quantum Principal Component Analysis (PCA), Quantum Support Vector Machines (QSVM), Quantum
Reinforcement Learning, quantum supervised and unsupervised learning, kernel design for Gaussian
processes, Gaussian process regression , quantum classifier or
a plethora of linear algebra routines like HHL, QSVD, qBLAS

Hidden units

Visible units

Deep Learning and Artificial Neural Network
“Restricted Boltzmann Machine (RBM)”
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A branch of artificial intelligence, concerned with the design and
development of algorithms that allow computers to evolve
behaviors based on empirical data.

E%Gnd Stablllty

MACHINE LEARNING
IN

FINANCE

Self-driving meal machines at
Purdue University




Quantum Machine Learning
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Developing game-changing quantum
algorithms to perform machine learning
tasks on large-scale scientific datasets for
various industrial and
technological applications

Machine
Learning



Quantum many-body problem and artificial neural networks

Challenge: Describing the nontrivial correlations encoded in the exponential complexity
of the many-body wave function

However, wave functions representing many physical many-body systems can be
characterized by an amount of information much smaller than the maximum capacity of
the corresponding Hilbert space

Michael Hush,
Science (Nov. 2017)

Input — - utput

Carleo and Troyer
Science 355, 602 (2017)




RESEARCH

Science 355, 602 (2017)

MANY-BODY PHYSICS

Solving the quantum many-body

o . . S ag+ S bili+d Wyhio!
problem with artificial Yu(SsW)=Y €7 T

neural networks {ha}

Giuseppe Carleo’™ and Matthias Trover™ ™

Transverse-field Ising (TFI) Model
Hom = ) ot )i
i 2]

Antiferromagnetic Heisenberg (AFH) model

LzZ0z '9z.1sn

Fig. 1. Artificial neural network encoding a many-body quantum state of N spins. A restricted
Boltzmann machine architecture that features a set of N visible artificial neurons (yellow dots) and a
set of M hidden neurons (gray dots) is shown. For each value of the many-body spin configuration
& = (o}, 05,..., 03 ), the artificial neural network computes the value of the wave function ‘¥(S).



Restricted Boltzmann Machine (RBM)

BOLTZMANN
MACHINES

QUANTUM CIRCUITS
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Boltzmann Law: Physics to Computers

BOLTZMANN
BOLTZMANN LAW MACHINES

ﬁnanoHUB T

QUANTUM CIRCUITS

P Paul
| e & @ SMolensky
RBMs were first introduced more than two decades ago (Smolensky, 1987) John;
Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. Hopkins
Parallel Distributed Processing: Volume 1: Foundations, pp. 194-281. MIT Press, Cambridge,
1987. ‘ Geoffrey
They have recently been used as constituents of “deep belief network” learning systems |5 o'y Hinton

(Hinton et al., 2006 ) \
“A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. Toronto


https://nanohub.org/members/8629

OBJECTIVE

DEFINITION OF THE PROBLEM

For an arbitrary d-dimensional system characterized by its self-adjoint Hamiltonian operator H e Caxd
we want to access the eigenstates ¥/(X ) of H and its corresponding eigen-energies and other
properties.

This is a very general problem that encompasses almost all of traditional quantum chemistry

OUR APPROACH

» We shall construct a neural-network to learn the required state of the system
» We shall construct a quantum-circuit to train the network

» We shall implement the machine on a quantum computer

Restricted Boltzmann Machine (RBM)



BACKBONE OF THE TALK

== f\

Nature Comm. 9, 4195 (2018)

ARTICLE

OPEN
Quantum machine learning for electronic

structure calculations

Rongxin Xial & Sabre Kais'>

in Two-Dimensional Materials

Implementation of Quantum Machine Learning for
Electronic Structure Calculations of Periodic Systems
on Quantum Computing Devices

S.H Sureshbabu, M. Sajjan, S. Oh and S. Kais

Hidden layer

Wisible layer

Quantum Machine-Learning for Eigenstate Filtration

Manas Sajjan, Shree Hari Sureshbabu, Sabre Kais

arXiv:2105.09488 (2021)

Journal of Chemical Information and Modeling
61, 6, 2667-2674 (2021)

Herein we demonstrate a quantum algorithm that can
filter any energy eigenstate of the system based on
either symmetry properties or on a predefined choice of
the user. We implement our algorithm for two-dimensional
materials on actual IBM-Q quantum devices.



https://pubs.acs.org/jcim
https://arxiv.org/search/?searchtype=author&query=Sajjan%2C+M
https://arxiv.org/search/?searchtype=author&query=Sureshbabu%2C+S+H
https://arxiv.org/search/?searchtype=author&query=Kais%2C+S
https://arxiv.org/abs/2105.09488

Model: Restricted Boltzmann Machine

Goal: Quantum Machine Learning for Material Design

Manas Sajjan Shree Hari Sureshbabu Rongxin Xia Junxu Li Raja Selvarajan Sangchul Oh



What to Expect: Our Main Contributions

1. Will construct a three-layered RBM that will be trained to learn any
arbitrary state of the system.

2. RMB will be implemented on a quantum device, by designing a quantum circuit
with quadratic resource requirements (circuit width, circuit depth, parameter count)

3. Will derive a generic lower bound for the successful sampling of the quantum
circuit in the algorithm in terms of the parameters of the network.

4. Will apply our algorithm on important 2D materials like graphene and
monolayer transition metal di-chalcogenides (TMDCs):Molybdenum disulfide MoS,
and Tungsten disulfide WS,

5. All numerical experiments will be implemented on quantum simulator

(Qiskit) and also on actual NISQ devices using the quantum processors at IBM.

We will show that the performance of our algorithm is in excellent agreement with the exact value in each case



NETWORK ARCHITECTURE (RESTRICTED BOLTZMANN MACHINE ANSATZ)
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ALGORITHM — A BROAD OVERVIEW

Initialize parameter set

X= (@, bW.d fc, e)
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This will bring the
“guantum” in
Quantum Machine Learning

To be described later on
a case by case basis




QUANTUM CIRCUIT FOR CONSTRUCTING THE AMPLITUDE

We shall describe a circuit to construct in the second step of the algorithm as described in
the previous slides. We shall hereafter adopt the following notation:

Notations to be used

» Each neuron in visible node is mapped to one qubit in the circuit. For n visible neurons we have n visible qubits
» Each neuron in the hidden nodes is mapped to one qubit in the circuit. For m hidden neurons we have m qubits

» Additionally, we shall use (n*m) ancillary qubits too

» The states of visible qubits shall be denoted by |...), and that hidden qubits shall be denoted by |...) ,. Note that
|0) , correspondsto o ;=-1 and |0) correspondstoh ;=-1.

> The state of ancilla will be denoted by |...) , e®(Lia0i+ X, bihy+ 3 wisoihy)

Q(a,b,W,a,h)

D {oh) eF (Xiaioit 3, bihi+37,; wijoih;)
ar.

» The combined state of all qubits will be denoted by Uy ha)




CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT

- o L
—R, (0
Visible nodes |0> (@) l Ct} QJ@ \/ /_ka 2k /K \/ 31i/k [k
_5 | —ai/kfea; e—ai/kfed
n=2110) r,0@]4 Cr—Ct) i /k g
: I >< —a; /k_I_ea /k e—ai/k_|_ea /k
— R, (6(5))— )
Hidden nodes _J ‘O> y00®) : C@ Gjﬁy
=9 -
m 10) —r,0)) ! Cu) Ct) ﬁ \/ b7 \/ 57
_ —b; /k Jbi/k “b./k, _bi/k
|0> H Ry (0(wi;)) obi /k: . Je—b;l—/kzj
I \/ —b; /k:_|_e J \/ —b;/F ;i /F
Ancilla ‘ O> l R, (6(w;;))
mxn=4 — :
‘O> I Ry (0(w;;))
10) : R, (0(w;)
(a)l \ ————
' T ai0i+3;

-5 7 0(0_37];7 — ‘a‘ka. b h
State at (a) ‘¢v,h,a> = Z \/O(O' h,a )|0'h>vh & |O> Zaﬁ e>i i %;ZJ 3P
(3,h)




CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT
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CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT
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We make projective measurements on above state and post-select all measurement results wherein ancillas |1)a
arein W . We call such events successful sampling.

Lower bound on Probability of successful sampling and choice of k-parameter
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Manas Sajjan and Shree Hari Sureshbabu and Sabre Kais. Quantum Machine-Learning T~ 1
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RESOURCE REQUIREMENTS AND IMPLEMENTATION DETAILS

* The number of qubits required for all our systems :
e 2 gubits to represent the visible nodes (n)
e 2 qubits to represent the hidden nodes (m)
* 4 ancilla qubits (n+m)

* The number of quantum gates required to sample the Gibb’s distribution are:
* 4 single qubit Rotation gates (R)) (n+m)
* 4 Controlled-Controlled Rotation gates (C - C-R, ) (nxm).
e 24 Bit-flip (X) gates (6 x nxm).

Number of iterations= 30000 for quantum simulator and in batches of 500 for IBM-Q devices

We run simulations on the classical computer and on the following platforms

* The IBM-Q is an online platform that offers IBM’s quantum processors via the cloud. The algorithm
is tested on 27 qubit quantum processors from IBM (IBM-Sydney and IBM-Toronto)

* Qiskit quantum simulator especially the gqasm backend



RESOURCE REQUIREMENTS: Quantum Advantage

e Classical RBM:

Classically, constructing such a full RBM distribution will require tracking amplitudes
from a 2¢(m+n) dimensional state space and hence has exponential resource
requirements in preparation.

Long, P. M.; Servedio, R. A. Restricted Boltzmann Machines are hard to approximately evaluate or simulate.
ICML 2010 - Proceedings, 27th International Conference on Machine Learning 2010, 703—710.

proved that a polynomial time algorithm for classically simulating or constructing a
full RBM distribution is not only absent now but is unlikely to exist even in future as
long as the polynomial hierarchy remains uncollapsed.

* Current RBM quantum circuit:

The quantum circuit in our algorithm uses m+n+mxn qubits only for constructing the
state indicating an O(m x n) scaling in qubit resource which if expressed in terms of
hidden node density o = m/n is O(a n"2)



CHOICE OF COST FUNCTION

We want valence band/ground state of each of the systems to be studied. We can use the
RBM ansatz constructed from the circuit and variationally minimize

(Y (X)|H 1 (X))

Cost function

Good old variational theorem for ground state !
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LiH Molecule (Change of Density = m/n)
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Methodology

* The wavefunction can be expressed as:
)= VPG s@x)
X

VA VA
Zi aiO'i +Z] b]h]+2l] Wl'jO'i h]

Hidden layer Sign layer

Lin) €
Z g Z{h} ezi aiaiZ+Z]~ b]'h]'+2ij WijO'iZhj

s(x) = tanh <c + z d, O'iz> +i(e + Zfi a’)

P(x) =

 Given Hamiltonian H and a trial state |$) = )., $(X) |x) e s
we compute the expectation value:
H . : .
(H) = (IHIS) Kanno, Shu, and Tomofumi Tada. "Many-body calculations for periodic

(d|d) materials via restricted Boltzmann machine-based VQE." Quantum
Science and Technology 6, no. 2 (2021): 025015.



Quantum algorithm to sample Gibbs distribution

* This algorithm is based on sequential
applications of controlled-rotation
operations, which tries to calculate a
distribution P(x) with an ancilla qubit showing
whether the sampling for P(x) is successful

* The quantum circuit mainly consists of two
types of operations:

» A one-qubit operation, R, that
corresponds to a rotational operation
whose angle is determined by the bias
parameters g;(visible) and b;(hidden)

» A three-qubit operation, C-C-R,, thatis a
controlled-controlled-rotation whose
angle is determined by the connection
parameter w;,

3)

Visible units

Hidden units

Ancilla units <

%
Lﬁ

|=u||=u||=u
< < =
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Hexagonal-Boron Nitride (h-BN )

Graphene



Implementation on the IBM-Q machine

The IBM-Q, is an online platform that offers IBM’s quantum processors via
the cloud. Programming the circuit is done through the open-source L
guantum computing software development framework called Qiskit.

Visible
)\

Qiskit is made up of four elements that each work together to enable
guantum computing and these elements are: Terra, Aer, Ignis, and Aqua.

Hidden
)

The algorithm is tested on 27 qubit quantum processors from IBM. -

The number of qubits required:
* 2 qubits to represent the visible nodes (n)
e 2 gubits to represent the hidden nodes (m)
* 4 ancilla qubits (n+m)

Ancilla qubits

O000000O0

The number of quantum gates required to sample the Gibb’s distribution
are:

* 4 single qubit Rotation gates (R ) (n+m)

* 4 Controlled-Controlled Rotation gates (C - C- R, ) (nxm).

e 24 Bit-flip (X) gates (6 x nxm).

Number of iterations= 30000 for IBM-gasm and about 500 for IBM-Q



Results

Implementation on IBM-Q to obtain electronic
structure of hexagonal Boron Nitride (h-BN)

Energy (eV)

- Exact value
e RBM Value

e

| Classical simulation |

r K M r
Reciprocal Lattice

b)

Energy (eV)

10 A - Exact value

e RBM Value

gasm backend
5} simulation 1
; /

\.

r K M r
Reciprocal Lattice

Energy (eV)

=—Exact value
RBM value from ibmq_toronto
e RBM value from ibmq_sydney

- IBM-Q implementation .

Reciprocal Lattice

Band structures of h-BN calculated using (a) classical simulation with transfer learning (red marker).
The solid black curve stands for the exact diagonalization of the tight-binding Hamiltonian. (b) Qiskit
gasm backend combined with the transfer learning method (red marker). (c) The implementation the

RBM sampling circuit on ibmq toronto (green) and ibmqg sydney (red).

Journal of Chemical Information and Modeling 61, 6, 2667-2674 (2021)
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Results

Implementation on IBM-Q to obtain electronic structure

of Graphene (Hubbard U =0 eV)

a)

Energy (eV)

10

-10

- Exact value
* RBM Value

Classical simulation

r K M
Reciprocal Lattice

b)

Energy (eV)

10

-10

- Exact value
* RBM Value

gasm backend
simulation

K M I
Reciprocal Lattice

c)

Energy (eV)

10}

-10 .I

= Exact value
RBM value from ibmq_toronto
¢ RBM value from ibmq_sydney

Reciprocal Lattice

Band structures of graphene with U=0 eV calculated using (a) classical simulation with transfer
learning (red marker). The solid black curve stands for the exact diagonalization of the tight-binding
Hamiltonian. (b) Qiskit gasm backend combined with the transfer learning method (red marker). (c)
The implementation the RBM sampling circuit on ibmq toronto (green) and ibmq sydney (red).




Implementation on IBM-Q_ to obtain

Results electronic structure of Graphene (Hubbard U =9.3 eV)

a) b) c)
= Exact value ' ' = Exact value ' ' = Exact value
20t RBM Value of upper band y 20 RBM Value of upper band ' RBM value from ibmq_toronto
 RBM Value of lower band * RBM Value of lower band 20 o RBM value from ibmq_sydney
15} 15}
~ Classical simulation ~ qasm backend S IBM-Q implementation
) © 10} simulation )
> > > 10
> ) 2
o) o) o)
c c c
L 11 L

o

-10 k&

Reciprocal Lattice Reciprocal Lattice Reciprocal Lattice

Band structures of graphene with U=9.3 eV calculated using (a) classical simulation with transfer
learning (red marker). The solid black curve stands for the exact diagonalization of the tight-binding
Hamiltonian. (b) Qiskit gasm backend combined with the transfer learning method (red marker). (c)
The implementation the RBM sampling circuit on ibmg toronto (green) and ibmq sydney (red).

Sureshbabu, Shree Hari, Manas Sajjan, Sangchul Oh, and Sabre Kais. "Implementation of Quantum Machine Learning for Electronic
Structure Calculations of Periodic Systems on Quantum Computing Devices." J. Chemical Information and Modeling 61, 2667 (2021)



PROBLEM TO BE STUDIED

DEFINITION OF THE PROBLEM

We want to perform a constrained minimization problem as follows wherein we minimize the energy
of the system among all choices of states that an eigenstates of some operator

in (H
vr{pneng )

S ={|¢) | Ol) = wly), [¢) € C}

Why is this important ?

» We can target arbitrary eigenstate based on symmetry operators that commutes with H.
For ex we may want the minimum energy state with a certain fixed spin angular momentum.



CHOICE OF COST FUNCTION

Cost function

Intuitive explanation is that
. the second term is the

{:} _r. E Il.l : M
1: u.«:I' |L} variance of operator O and is
non-negative. Since we
penalize the variance with a
high penalty parameter, so
only way the cost function is
minimized is if the
State has zero-variance with
for Eigenstate Filtration in Two-Dimensional Materials, 2021,2105.09488 arXiv operator O or is an eigenstate

of O

F(|4), H,0,)) = (| H[p) + At

Manas Sajjan and Shree Hari Sureshbabu and Sabre Kais. Quantum Machine-Learning



Excited states

> We variationally compute the excited states too by using orthogonality
restriction on the ground states.

» We have applied the results to TMDCs (Transition —metal dichalcogenides )

Monolayer TMDCs | Top view -

VY YV Y Y Yy

(a) | ’9' V ’V ’9' V V ’9' ’9'

V V V ’9' V V V V
'?' V ’9' V V L2 V "9'
’?’ ’9’ V V "P’ ’?’ ’?’ ‘9’ Manas Sajjan
V ’9' ’?' '?' ’?’ V V ’9’
(b) V '9' ’7 V V ’9' V ”9'

Side view

Molybdenum disulfide MoS, Tungsten disulfide WS,



The top view of the TMDC monolayer: MoS2 and WS2

(b)

The orange

Dan atoms are a
chalcogen (S)
The blue atoms

( ) Chalcogen

Unit cell in real space are the
k
" metal centre
M
K (Mo, W)

K’

Unit cell in reciprocal space

= | where ag i8 the metal-chalcogen bond length.
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e e




HAMILTONIAN BEING USED

A three-band tight-binding Hamiltonian involving

the following orbitals of the transition metal. This
Tight-binding is very accurate in energy across the
entire BZ as lack of chalcogen orbitals is somewhat
compensated using third-nearest neighbor interaction

Energy (eV)

DO
~—

S
S

)

|
Ny

N

Energy (eV)

Liu, G. B.; Shan, W. Y.; Yao, Y.; Yao, W.; Xiao, D. Three-band tight-binding model

for monolayers of group-VIB transition metal dichalcogenides. Physical Review B -

Condensed Matter and Materials Physics 2013, 88, 1-11.




CHOICE OF OPERATOR TO FILTER EXCITED STATES

9)(9
0

A > |[HIl:

O
W

Formally equivalent to deflation as all projection operators are idempotent



VALENCE AND CONDUCTION BAND - RESULTS FOR MosS,
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VALENCE AND CONDUCTION BAND- RESULTS FOR WS,

Energy (eV)
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Enhancement of Photovoltaic Current through Dark States in Donor-
Acceptor Pairs of Tungsten-Based Transition Metal Di-Chalcogenides

. Acceptor
Photons e i : Donor-Acceptor Mode! Limit
, with Dark State Protection
Dipole-coupled

Donor Layers g /’/C B
(WSeS)

(B) Standard photon-to-electron conversion with
donorand acceptor

Donor-Acceptor Donor

Electronic Coupling b— 7
d ~ & Acceptor Our Donor-Acceptor

Acceptor Layer Photons e e Device Efficiency
(WSe)) R Limit is <30 %

0
<
(X
g
'2
‘)
-

E

Ov O (s g gr— ¥

(C) New brightand dark states arise fromstrong

4 =il excitonic coupling due to dipole interactions

Sayan Roy; Zixuan Hu; Sabre Kais; Peter Bermel (ECE-Purdue)

Advanced Functional Materials, 2100387, (2021)



Current / Future work using RBM
» Reduction of cost of the algorithm

» Band-gap engineering

» Studying energy-splitting like Spin-Orbit coupling
»Quantum phase-transitions using finite size scaling
»Quantum thermodynamics and renormalization group

»Quantum states classifications and tomography (Maximal Entropy Approach)

»Open quantum dynamics and RBM


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&sortby=pubdate&citation_for_view=wtnZaMMAAAAJ:rTD5ala9j4wC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&sortby=pubdate&citation_for_view=wtnZaMMAAAAJ:rTD5ala9j4wC

Quantum Phase Transitions

*» Classical: Classical phase transitions are driven by thermal energy
. R =
fluctuations p .y
s 7/

Like the melting of an ice cube:

Solid — Liquid — Gas

% Quantum: Quantum phase transitions, at T=0, are driven by the
Heisenberg uncertainty principle

Like the melting of a Wigner crystal: Two dimensional electron
layer trapped in a quantum well




Statistical Mechanics

Classical

|

Free Energy
F(K;)=-KgT log(Z)

Quantum

|

}

T— 0
Ground State E,(4)
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Critical Phenomena
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In the present approach, the finite size corresponds not to the spatial
dimension, as in statistics, but to the number of elements in a complete
basis set used to expand the exact eigenfunction of a given Hamiltonian.

Quantum Mechanics

00 M
p=Yag=2ad || OEESGREES
n=0 n=0

The FSS ansatz
(Variational Calculations)

Phys. Rev. Letters 79, 3142 (1997)




Finite Size Scaling and Quantum Phase Transitions

3.0
2.0
1.0 — —
0.835 0.840 0.845
A
Juan Pablo Neirotti, Math, Aston University
Finite Size Scaling for Atomic and Molecular Systems", Pablo Serra, Physics, U. Cordoba

Sabre Kais and Pablo Serra _ _
Advances in Chemical Physics, Volume 125, 1-100 (2003) Physical Review Letters, 79, 3142 (1997)
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PRL 115, 180404 (2015) PHYSICAL REVIEW LETTERS 30 OCTOBER 2015
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Quantum Phase Transition and Universal Dynamics in the Rabi Model

Myung-Joong Hwang, Ricardo Puebla, and Martin B. Plenio
Institut fiir Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universitit Ulm, D-89069 Ulm, Germany
(Received 10 March 2015: revised manuscript received 29 September 2015; published 29 October 2015)

We consider the Rabi Hamiltonian, which exhibits a quantum phase transition (QPT) despite consisting
only ol a single-mode cavity lield and a two-level atom. We prove QPT by deriving an exact solution 1n the
limit where the atomic transition frequency in the unit of the cavity frequency tends to infinity. The effect of

A RTI C_ I_E | '] Check for updates

OPEN
Observation of a quantum phase transition in the
quantum Rabi model with a single trapped ion

M.-L. Caiq "4, Z.-D. Liu"?, W .-D. Zhao'%, v.-K. Wul, Q.-X. Meil, ¥. Jiang!, L. Hel, X. Zhang!2, Z-C. Zhou!-3 &

L.-MNA. Duan 124

CQuantum phase transitions (QPTs) are usually associated with many-body systems in the
thermodynamic limit when their ground states show abrupt changes at zero temperature ‘
with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can na[-ure
also occur in a system composed of only a two-level atom and a single-mode bosonic field,

described by the quantum Rabi model (QRMNM). Here we report an experimental demon- COMMUNICATIONS
stration of a QPT in the QRM using a 77 Tvb+ ion in a Paul trap. We measure the spin-up state




Quantum Rabi Model

* Two-level system interacting with a bosonic mode:

A - .
H = Eaz +wpa'a — Aoz(a +a')

* Second order quantum phase transition in the limit A/w, — 0. Bilal Khalid
* For g defined as g = 24 /Vw,A, there is a phase transition around
g = 1.

* For g < 1, the spin system is frozen in its ground state.

* For g > 1, the spin system points along the x-axis and the
environment is in a super-radiant phase.

They report an experimental demonstration of a QPT in the
QRM using a 171Yb+ ion in a Paul trap.



Quantum Rabi Model
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N=10,12,14,16,24

0.99 1.00 1.01 1.02
g

N=10,12,14,16,24

0.99 1.00 1.01 1.02

Quantum Rabi Model

* Number of qubits:
* 4 qubits for visible units (n)
e 8 qubits for hidden units (m)
* 12 ancillary qubits (n+m)

* Number of gates:

* 12 single qubit rotations
(n+m)

e 32 Controlled-Controlled
rotations (nxm)

e 192 X (bit-flip) gates (6xnxm)

e Total ~ 240

* Number of iterations = ~ 40,000
for each g value

Shree Hari
Sureshbabu



Finite-size scaling
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Finite-size scaling
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Renormalization Group (RG) and Machine Learning

e A good understanding for the powerful representation
and classification of neural networks is still missing!

e In physics, RG introduced by Wilson has provided for
effective coarse grain descriptions of Hamiltonians

e Maps that retain partition functions are used in RG. Exact
mapping to RBM hasn’t been solved for beyond one-d
Ising chains. The hidden layer in RBM samples coarse n v U 0
description of RG. Approximate solutions are likely to Deep Learning and Renormalization
reveal interesting details about learning near critical points Group Elow
In general. P o

physical physical manifold

o Relative entropy over the layers of the neural network et
might provide for a better theoretical understanding about
the strengths and limits of neural networks in terms of
training time and achievable accuracy for unsupervised ol VAR s
learning L TN e

critical > \
trajectories .
isaie | N R,["]

Raja Selvarajan| \&




Quantum Computing for Open Quantum Systems
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A=System of interest B= Bath, Environment,

HAB :HU+VA37 where Hﬂ = HA ]_B —+ 1& 2y H—B:

Vaip is the hamiltonian describing the interaction between two parts

d
Von Neumann Equation| i — pag(t) = [Hagp, pan(t) ],

Focusing on the system A pa(t) =Trp{pap(l)}.

Quantum Master Equation

Unitary Hamiltonian Evolution Dissipator

d
5 Palt) = %[E pa(t)] + Zﬂ-t‘j(ﬂpa(f)@ - %[F_Jﬁ PA(IL-)]JF)-

p(t)=Lo(t)—p(t)=) p (t)=) M,pM} Kraus Sum Operators
" "



Quantum State Classifications and Tomography
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Machine Learning Framework for Quantum Sampling of Highly-
Constrained, Continuous Optimization Problems

Blake A. Wilson"®", Zhaxylyk A. Kudyshev'>", Alexander V. Kildishev', Sabre Kais®> Vladimir M.

Shalaev'>, and Alexandra Boltasseva®?

!cHool o! Eectrlcal ang Eomputer Engineering, Birck Nanotechnoclogy Center and Purdue

Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
2School of Chemistry, Purdue University, West Lafayette, IN 47907, USA

3 The Quantum Science Center (QSC), a National Quantum Information Science Research
Center of the U.S. Department of Energy (DOE), Oak Ridge, TN 37931

“authors with equal contribution

arXiv:2105.02396, (2021)

Abstract

In the recent years, there is a growing interest in using quantum computers for solving
combinatorial optimization problems. In this work, we developed a generic, machine learning-
based framework for mapping continucus-space inverse design problems into surrogate
quadratic unconstrained binary optimization (QUBO) problems by employing a binary
variational autoencoder and a factorization machine. The factorization machine is trained as a
low-dimensional, binary surrogate model for the continuous design space and sampled using
various QUBO samplers. Using the D-Wave Advantage hybrid sampler and simulated
annealing, we demonstrate that by repeated resampling and retraining of the factorization
machine, our framework finds designs that exhibit figures of merit exceeding those of its
training set. We showcase the framework’s performance on two inverse design problems by
optimizing (i) thermal emitter topologies far thermophotovoltaic applications and (ii) diffractive
meta-gratings for highly efficient beam steering. This technique can be further scaled to
leverage future developments in quantum optimization to solve advanced inverse design
problems for science and engineering applications.

]

iy bl

ar)

Blake Wilson
ECE-Purdue


https://arxiv.org/abs/2105.02396

Conclusion

Restricted Boltzmann Machine (RBM) can be used to perform electronic structure
calculations (ground and excited States) with chemical accuracy for molecules and materials:
H2, H20, LiH, h-BN, graphene, Molybdenum disulfide(MoS2) and Tungsten disulfide (WS2)
The number of qubits required scales as O(visible=m hidden=n), the complexity of the gates
turns out to be O(mn) for one sampling. So, we have quadratic resource requirements
(circuit width, circuit depth, parameter count). We have a lower bound on the number

successful sampling.

FSS combined with RBM can be used to calculated quantum critical parameters and
guantum phase transitions.

We trained the network on various flavors of computation using not only a classical
computer, Qasm backend quantum simulator in Qiskit but also a real IBMQ machine (IBM
Sydney and IBM Toronto) with the objective to see the performance of the algorithm on
actual NISQ devices.

In all flavors of computation our algorithm demonstrated very high accuracy when compared
to the exact values obtained from direct diagonalization.
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