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Outline
• Introduction: Brief introduction  to our research in the field of quantum information and quantum 

computing for complex chemical systems. 

• QML  Model:    Quantum machine learning and the Restricted Boltzmann Machine (RBM); 

Quantum algorithm that can filter any energy eigenstate of the system;

Quantum circuit;  implement our algorithm on quantum simulators and  actual IBM-Q 

Applications:  Electronic Structure of Molecules:   Simple molecules such as  H2, LiH, and H2O

Electronic Structure Calculations of 2D Materials: Hexagonal Boron Nitride  and Graphene

Molybdenum Disulfide  MoS2 and Tungsten disulfide WS2   

• Finite Size Scaling and Quantum Phase Transitions:   Quantum Rabi Model 

(Two-level system interacting with an optical field )

• Future Work: QML for open quantum dynamics, quantum state tomography, quantum thermodynamics, 

quantum optimization to solve advanced inverse design problems for science and engineering applications  and 

implementations on quantum devices with reduction of the algorithm cost. 



Our Research in the Field of 
Quantum Information and 

Quantum Computing   

Entanglement and Chemical Reactions

Quantum Coherence in Complex Chemical Systems 

Electronic Structure Calculations of  Molecules and Materials 

Dimensional Scaling, Finite Size Scaling and Quantum Phase Transitions

Data Analytics and Quantum Machine Learning

Open Quantum Dynamics and quantum encryption protocols

Quantum Games for Quantum Education (Quantum tic-tac-toe)

https://arxiv.org/search/?searchtype=author&query=Sabre+Kaish
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Quantum Phase Estimation Algorithm

Is a quantum algorithm to estimate the phase (or eigenvalue) of an eigenvector of a unitary operator.

𝑼 = 𝒆−𝒊𝑬𝒕= 𝒆𝟐𝝅𝒊𝝋

Initially introduced by Alexei Kitaev in 1995 and Seth Lloyd, Phys. Rev. Lett. 83, 5162 ( 1999 )

https://en.wikipedia.org/wiki/Quantum_algorithm
https://en.wikipedia.org/wiki/Alexei_Kitaev
https://scholar.google.com/citations?user=lyMGnwIAAAAJ&hl=en&oi=sra


Quantum Phase Estimation Algorithm

Phys. Chem. Chem. Phys. 10, 5388–5393 (2008)

We have presented a quantum algorithm to obtain the energy spectrum of molecular

systems based on the multiconfigurational self-consistent field (MCSCF) wave

function. We demonstrated that such an algorithm can be used to obtain the energy
spectrum of the water molecule.

Simulated quantum computation of molecular energies A Aspuru-Guzik, AD Dutoi, PJ Love,

M Head-Gordon,  Science 309 (5741), 1704-1707 (2005)

Ph.D. 2004-2008;  Now:  School of Physics at Xi’an Jiaotong University, China 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Ag_6KEgAAAAJ&citation_for_view=Ag_6KEgAAAAJ:d1gkVwhDpl0C


The circuit design for the unitary propagator for the 
Hydrogen Molecule,  H2 

THE JOURNAL OF CHEMICAL PHYSICS 134, 144112 (2011)

“ Decomposition of unitary matrices for finding quantum circuits: Application 

to molecular Hamiltonians”

Quantum Classical Hybrid Algorithm (2011)

Anmer  Daskin and Sabre Kais

Anmer  Daskin 

Dept. of Computer Engineering,

Istanbul Medeniyet University,

Turkey



Decomposition of a given unitary matrix 

in terms of quantum gates
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References  in the Field Before 2014

Advances in Chemical Physics, Vol 154 (2014)

17 Chapters Covering different Aspects of the field 
QIS  For Chemical systems

Ken Brown  (Duke) ; Peter Love  (Tufts ); Sabre Kais (Purdue)
Daniel Lidar (USC)  and Alan Aspuru-Guzik ( Toronto) 

NSF-CCI Center (2010-2013)

Quantum Information for Quantum Chemistry

https://www.chem.purdue.edu/kais/nsf-cci/index.html

https://www.chem.purdue.edu/kais/docs/CCI-Final-Report.pdf


Recent Review Articles: 

1. Y. Cao et al, “Quantum chemistry in the age of 

quantum computing,” Chemical Reviews 119, 19, 

10856 (2019).

2. S. McArdle et al., “Quantum computational 

chemistry,” Reviews of Modern Physics 92, 1, 

015003 (2020).

3. B. Bauer et al., “Quantum algorithms for 

quantum chemistry and quantum materials 

science,” Chemical Reviews 120, 22, 12685 (2020)

……

Yudong Cao

Ph.D 2012 – 2016 

Zapata Computing, Inc.



Summary 

We have theoretical  and experimental results for 

Simple Molecules: H2, H2O, LiH, BeH2, He2,… H12

(2-12 qubits)

SuperconductingTrapped IonsOpticalNMRD-Wave



What is Next?

Challenges: Hardware

• Quantum Volume:  Circuit width ( # qubits ); circuit depth (# 
quantum gates ) and architecture of the device (connectivity of the 
qubits)

• quantum error corrections (Fault-Tolerant Quantum Computer)

Hardware improvements alone is not enough!  

We need to design  efficient programmable 

quantum circuits for molecular Hamiltonians

• Quantum Classical Hybrid Algorithms

• Adiabatic Quantum Algorithms

• Quantum Machine Learning Algorithms

• Developing Algorithms in Qudit-Space

• Programmable Quantum Simulator

https://quantum-journal.org/papers/q-2021-02-04-392/


Phase Estimation with Qudits

Yuchen Wang

Zixuan Hu



Adv. Quantum Technology  1900074   (2019)

Andrew M. Weiner

ECE, Purdue



Qudit Quantum Gates

The Z gate and X gate are generalized to d-dimension
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Review Article  

“Qudits and High-Dimensional Quantum Computing” 

Y. Wang, Z. Hu; Barry Sanders, Sabre Kais, 

Frontiers in Physics  (2020)

Yuchen Wang

Zixuan Hu

Barry Sanders



Rongxin Xia

Teng Bian



Phase Transitions 

Electronic Structure

Quantum Mechanics

Ising Model
Statistical Mechanics

Symmetry Breaking 

Quantum Criticality and Phase Transitions

Quantum critical phenomena 

and stability of atomic and 

molecular ions

S Kais, P Serra

International Reviews 

in Physical Chemistry 

19,  97 (2000)

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&cstart=20&pagesize=80&citation_for_view=wtnZaMMAAAAJ:ufrVoPGSRksC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&cstart=20&pagesize=80&citation_for_view=wtnZaMMAAAAJ:ufrVoPGSRksC


Quantum Machine-Learning 

Deep Learning and Artificial Neural Network 
“Restricted Boltzmann Machine (RBM)”

Quantum Principal Component Analysis (PCA), Quantum Support Vector Machines (QSVM), Quantum 
Reinforcement Learning, quantum supervised and unsupervised learning, kernel design for Gaussian 

processes, Gaussian process regression , quantum classifier or 
a plethora of  linear algebra routines like HHL, QSVD, qBLAS

14 september 2017 | VOL 549 | NA T U RE |



Machine Learning
A branch of artificial intelligence, concerned with the design and 

development of algorithms that allow computers to evolve 
behaviors  based on empirical data.

Solar Farm

Grid Stability

Self-driving meal machines at 
Purdue University



Quantum Machine Learning

Quantum 
Computing

Machine 
Learning

Developing game-changing quantum 
algorithms to perform machine learning 

tasks on large-scale scientific datasets for 
various industrial and 

technological applications



Quantum many-body problem and  artificial neural networks

Michael Hush, 

Science  (Nov.  2017) 

Carleo and Troyer

Science 355, 602 (2017)

Challenge: Describing the nontrivial correlations  encoded in the exponential complexity 
of the  many-body  wave function

However, wave functions representing many physical many-body systems can be 
characterized by an amount of information much smaller than the maximum capacity of 

the corresponding Hilbert space



Science 355, 602 (2017)

Transverse-field Ising (TFI) Model

Antiferromagnetic Heisenberg (AFH) model



Restricted Boltzmann Machine (RBM) 

Quantum Computing 



Boltzmann Law: Physics to Computers

Supriyo Datta, ECE Purdue 

Restricted Boltzmann Machine(RBM)

RBMs were first introduced more than two decades ago (Smolensky, 1987) 
Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. 
Parallel Distributed Processing: Volume 1: Foundations, pp. 194–281. MIT Press, Cambridge, 
1987. 
They have recently been used as constituents of “deep belief network” learning systems 
(Hinton et al., 2006 )
“A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006. 

Paul 

Smolensky

Johns 

Hopkins

Geoffrey 
Hinton

Toronto

https://nanohub.org/members/8629


OBJECTIVE

DEFINITION OF THE PROBLEM

OUR APPROACH

For an arbitrary d-dimensional system characterized by its self-adjoint Hamiltonian operator                           
we want to access the eigenstates              of       and its corresponding eigen-energies and other 
properties.

This is a very general problem that encompasses almost all of traditional quantum chemistry

 We shall construct a neural-network to learn the required state of the system

 We shall construct a quantum-circuit to train the network

 We shall implement the machine  on a quantum computer

Restricted Boltzmann Machine (RBM) 



BACKBONE OF THE TALK

Nature Comm. 9, 4195 (2018)

Implementation of Quantum Machine Learning for 
Electronic Structure Calculations of Periodic Systems 

on Quantum Computing Devices

Journal of Chemical Information and Modeling

61, 6, 2667–2674 (2021) 

S.H Sureshbabu, M. Sajjan, S. Oh  and S. Kais

Quantum Machine-Learning for Eigenstate Filtration 

in Two-Dimensional Materials

Manas Sajjan, Shree Hari Sureshbabu, Sabre Kais

arXiv:2105.09488 (2021)

physics.chem-ph

Herein we demonstrate a quantum algorithm that can 

filter any energy eigenstate of the system based on 

either symmetry properties or on a predefined choice of 
the user. We implement our algorithm for two-dimensional 
materials on actual IBM-Q quantum devices.

https://pubs.acs.org/jcim
https://arxiv.org/search/?searchtype=author&query=Sajjan%2C+M
https://arxiv.org/search/?searchtype=author&query=Sureshbabu%2C+S+H
https://arxiv.org/search/?searchtype=author&query=Kais%2C+S
https://arxiv.org/abs/2105.09488


Model:  Restricted Boltzmann Machine

Goal: Quantum Machine Learning for Material Design

Rongxin Xia Junxu LiManas Sajjan Shree Hari Sureshbabu Raja Selvarajan Sangchul Oh



What to Expect: Our Main Contributions

1. Will construct a three-layered RBM that will be trained to learn any 
arbitrary state of the system.

2. RMB will be implemented on a quantum device, by designing a quantum circuit 
with quadratic resource requirements (circuit width, circuit depth, parameter count)

3. Will derive a generic lower bound for the successful sampling of the quantum 
circuit in the  algorithm  in terms of the parameters of the network.

4. Will  apply our algorithm on important 2D materials like graphene and 
monolayer transition metal di-chalcogenides (TMDCs):Molybdenum disulfide MoS2 

and Tungsten disulfide WS2

5. All numerical experiments  will be implemented on quantum simulator
(Qiskit) and  also  on actual NISQ devices using the quantum processors at IBM.

We will  show that the performance of our algorithm is in excellent agreement with the exact value in each case



NETWORK ARCHITECTURE (RESTRICTED BOLTZMANN MACHINE ANSATZ)



ALGORITHM – A BROAD OVERVIEW

How is this done ??

What cost function is used ??

This will bring the 
“quantum” in 
Quantum Machine Learning

To be described later on 
a case by case basis



QUANTUM CIRCUIT FOR CONSTRUCTING THE AMPLITUDE 

We shall describe a circuit to construct in the second step of the algorithm as described in 
the previous slides. We shall hereafter adopt the following notation:

 Each neuron in visible node is mapped to one qubit in the circuit. For n visible neurons we have n visible qubits

 Each neuron in the hidden nodes is mapped to one qubit in the circuit. For m hidden neurons we have m qubits

 Additionally, we shall use (n*m) ancillary qubits too

 The states of visible qubits shall be denoted by | ۧ… v and that hidden qubits shall be denoted by | ۧ… h . Note that 
| ۧ0 v corresponds to 𝜎 𝑖 = -1  and | ۧ0 h corresponds to h 𝑗 = -1 . 

 The state of ancilla will be denoted by | ۧ… a

 The combined state of all qubits will be denoted by  

Notations to be used 



CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT 

State at (a)

(a)



CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT 

(b)

State at (b)



CONSTRUCTION OF AMPLITUDE USING QUANTUM CIRCUIT 

We make projective measurements on above state and post-select all measurement results wherein ancillas 
are in W   . We call such events successful sampling.

Lower bound on Probability of successful sampling and choice of k-parameter



RESOURCE REQUIREMENTS AND IMPLEMENTATION DETAILS

• The number of qubits required for all our systems :

• 2 qubits to represent the visible nodes (n)

• 2 qubits to represent the hidden nodes (m)

• 4 ancilla qubits (n+m)

• The number of quantum gates required to sample the Gibb’s distribution are: 

• 4 single qubit Rotation gates (Ry) (n+m)

• 4 Controlled-Controlled Rotation gates (C − C− Ry ) (n×m). 

• 24 Bit-flip (X) gates (6 × n×m). 

Number  of iterations= 30000 for quantum simulator and in batches of 500 for IBM-Q devices

We run simulations on the classical computer and   on the following platforms

• The IBM-Q is an online platform that offers IBM’s quantum processors via the cloud. The algorithm 
is tested on 27 qubit quantum processors from IBM (IBM-Sydney and IBM-Toronto)

• Qiskit quantum simulator especially the qasm backend



RESOURCE REQUIREMENTS: Quantum Advantage

• Classical RBM:

Classically, constructing such a full RBM distribution will require tracking amplitudes 
from a 2^(m+n) dimensional state space and hence has exponential resource 
requirements in preparation. 
Long, P. M.; Servedio, R. A. Restricted Boltzmann Machines are hard to approximately evaluate or simulate. 
ICML 2010 - Proceedings, 27th International Conference on Machine Learning 2010, 703–710.

proved that a polynomial time algorithm for classically simulating or constructing a 
full RBM distribution is not only absent now but is unlikely to exist even in future as 
long as the polynomial hierarchy remains uncollapsed.

• Current RBM quantum circuit: 

The quantum circuit in our algorithm uses m+n+m×n qubits only for constructing the 
state indicating an O(m × n) scaling in qubit resource which if expressed in terms of 
hidden node density α = m/n is O(α n^2 ) 



CHOICE OF COST FUNCTION

We want valence band/ground state of each of the systems to be studied. We can use the
RBM ansatz constructed from the circuit and variationally minimize 

Cost function

Good old variational theorem for ground state !



Results

Rongxin Xia

The results of H2 (n = 4, m =8, iterations=10,000), LiH (n = 4, m = 8, iterations=40,000)
and  H2O (n = 6, m = 6, iterations=40,000) Nature Comm. 9, 4195 (2018)



LiH Molecule (Change of Density = m/n)  



Methodology
• The wavefunction can be expressed as:

|φۧ = ෍

𝑥

𝑃 𝑥 𝑠 𝑥 |𝑥ۧ

𝑃 𝐱 =
σ{ℎ} 𝑒

σ𝑖 𝑎𝑖𝜎𝑖
𝑧+σ𝑗 𝑏𝑗ℎ𝑗+σ𝑖𝑗𝑤𝑖𝑗𝜎𝑖

𝑧ℎ𝑗

σ 𝑥′σ{ℎ} 𝑒
σ𝑖 𝑎𝑖𝜎𝑖

𝑧+σ𝑗 𝑏𝑗ℎ𝑗+σ𝑖𝑗𝑤𝑖𝑗𝜎𝑖
𝑧ℎ𝑗

𝑠 𝑥 = 𝑡𝑎𝑛ℎ 𝑐 +෍

𝑖

𝑑𝑖 𝜎𝑖
𝑧 + 𝑖(𝑒 +෍

𝑖

𝑓𝑖 𝜎𝑖
𝑧)

• Given Hamiltonian H and a trial state |φ〉 = σ𝒙 φ(𝐱) |𝒙〉
we compute the expectation value:

⟨𝑯ۧ =
〈φ|H|φ〉

〈φ|φ〉
Kanno, Shu, and Tomofumi Tada. "Many-body calculations for periodic 

materials via restricted Boltzmann machine-based VQE." Quantum 

Science and Technology 6, no. 2 (2021): 025015.



• This algorithm is based on sequential 
applications of controlled-rotation 
operations, which tries to calculate a 
distribution P(x) with an ancilla qubit showing 
whether the sampling for P(x) is successful 

• The quantum circuit mainly consists of two 
types of operations: 
A one-qubit operation, Ry, that 

corresponds to a rotational operation 
whose angle is determined by the bias 
parameters 𝑎i(visible) and 𝑏j(hidden)

A three-qubit operation, C-C-Ry, that is a 
controlled-controlled-rotation whose 
angle is determined by the connection 
parameter 𝑤ij

Quantum algorithm to sample Gibbs distribution



Hexagonal-Boron Nitride (h-BN )

Graphene



Implementation on the IBM-Q machine
• The IBM-Q is an online platform that offers IBM’s quantum processors via 

the cloud. Programming the circuit is done through the open-source 
quantum computing software development framework called Qiskit.

• Qiskit is made up of four elements that each work together to enable 
quantum computing and these elements are: Terra, Aer, Ignis, and Aqua. 

• The algorithm is tested on 27 qubit quantum processors from IBM. 

• The number of qubits required:

• 2 qubits to represent the visible nodes (n)

• 2 qubits to represent the hidden nodes (m)

• 4 ancilla qubits (n+m)

• The number of quantum gates required to sample the Gibb’s distribution 
are: 

• 4 single qubit Rotation gates (Ry) (n+m)

• 4 Controlled-Controlled Rotation gates (C − C− Ry ) (n×m). 

• 24 Bit-flip (X) gates (6 × n×m). 

Number  of iterations= 30000 for IBM-qasm and about 500 for IBM-Q 
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Results

Band structures of h-BN calculated using (a) classical simulation with transfer learning (red marker). 

The solid black curve stands for the exact diagonalization of the tight-binding Hamiltonian. (b) Qiskit

qasm backend combined with the transfer learning method (red marker). (c) The implementation the 

RBM sampling circuit on ibmq toronto (green) and ibmq sydney (red). 

Implementation on IBM-Q to obtain electronic 
structure of hexagonal Boron Nitride (h-BN)

Journal of Chemical Information and Modeling 61, 6, 2667–2674 (2021) 

https://pubs.acs.org/jcim


Results

Band structures of graphene with U=0 eV calculated using (a) classical simulation with transfer 

learning (red marker). The solid black curve stands for the exact diagonalization of the tight-binding 

Hamiltonian. (b) Qiskit qasm backend combined with the transfer learning method (red marker). (c) 

The implementation the RBM sampling circuit on ibmq toronto (green) and ibmq sydney (red).

Implementation on IBM-Q to obtain electronic structure 
of Graphene (Hubbard U = 0 eV)



Results

Band structures of graphene with U=9.3 eV calculated using (a) classical simulation with transfer 

learning (red marker). The solid black curve stands for the exact diagonalization of the tight-binding 

Hamiltonian. (b) Qiskit qasm backend combined with the transfer learning method (red marker). (c) 

The implementation the RBM sampling circuit on ibmq toronto (green) and ibmq sydney (red).

Implementation on IBM-Q to obtain 
electronic structure of Graphene (Hubbard U = 9.3 eV)

Sureshbabu, Shree Hari, Manas Sajjan, Sangchul Oh, and Sabre Kais. "Implementation of Quantum Machine Learning for Electronic

Structure Calculations of Periodic Systems on Quantum Computing Devices." J. Chemical Information and Modeling 61, 2667 (2021)



PROBLEM TO BE STUDIED

DEFINITION OF THE PROBLEM

We want to perform a constrained minimization problem as follows wherein we minimize the energy 
of the system among all choices of states that an eigenstates of some operator 

Why is this important ?

 We can target arbitrary eigenstate based on symmetry operators that commutes with H. 
For ex we may want the minimum energy state with a certain fixed spin angular momentum.



CHOICE OF COST FUNCTION

Intuitive explanation is that 
the second term is the 
variance of operator O and is 
non-negative. Since we 
penalize the variance with a 
high penalty parameter , so 
only way the cost function is 
minimized is if the 
State has zero-variance with 
operator O or is an eigenstate 
of O

Cost function



Excited states

 We variationally compute the excited states too by using orthogonality 
restriction on the ground states.

We have applied the results to TMDCs (Transition –metal dichalcogenides ) 

Monolayer TMDCs

Side view

Top view

Manas Sajjan

Molybdenum disulfide MoS2 Tungsten disulfide WS2



The top view of the TMDC monolayer: MoS2 and WS2

The orange 
atoms are a 
chalcogen (S)
The blue atoms 
are the
metal centre
(Mo, W)



HAMILTONIAN BEING USED

A three-band tight-binding Hamiltonian involving
the following orbitals of the transition metal. This
Tight-binding is very accurate in energy across the
entire BZ as lack of chalcogen orbitals is somewhat
compensated using third-nearest neighbor interaction



CHOICE OF OPERATOR TO FILTER EXCITED STATES

Formally equivalent to deflation as all projection operators are idempotent



VALENCE AND CONDUCTION BAND - RESULTS FOR MoS2



VALENCE AND CONDUCTION BAND- RESULTS FOR WS2



Enhancement of Photovoltaic Current through Dark States in Donor-
Acceptor Pairs of Tungsten-Based Transition Metal Di-Chalcogenides

Advanced Functional Materials, 2100387, (2021)

Sayan Roy; Zixuan Hu; Sabre Kais; Peter Bermel (ECE-Purdue)



Reduction of cost of the algorithm

 Band-gap engineering 

 Studying energy-splitting like Spin-Orbit coupling

Quantum phase-transitions using finite size scaling

Quantum thermodynamics and renormalization group

Quantum states classifications and tomography (Maximal Entropy Approach)

Open quantum dynamics and RBM

Current / Future work using RBM

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&sortby=pubdate&citation_for_view=wtnZaMMAAAAJ:rTD5ala9j4wC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wtnZaMMAAAAJ&sortby=pubdate&citation_for_view=wtnZaMMAAAAJ:rTD5ala9j4wC


Quantum Phase Transitions

 Classical: Classical phase transitions are driven by thermal energy 
fluctuations

Like the melting of an ice cube:

Solid GasLiquid

P

T

Solid
Liquid

Gas

CP

 Quantum: Quantum phase transitions, at T=0, are driven by the 
Heisenberg uncertainty principle

Like the melting of a Wigner crystal: Two dimensional electron 
layer trapped in a quantum well

crystalWigner liquid Fermi

)(0 E



Statistical Mechanics

Classical Quantum

Free Energy             
F(Ki)=-KBT log(Z)

T          0
Ground State ……:      )(0 iE 

Critical Phenomena

Correlation Length
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Critical Phenomena

Mass Gap of H
 


 )(~1

CE

Finite Size Scaling
Thermodynamic Limit
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Finite Size Scaling
Number of Basis Functions
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Applications Applications



In the present approach, the finite size corresponds not to the spatial 

dimension, as in statistics, but to the number of elements in a complete 

basis set used to expand the exact eigenfunction of a given Hamiltonian.

Quantum Mechanics
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Finite Size Scaling and Quantum Phase Transitions

Finite Size Scaling for Atomic and Molecular Systems", 

Sabre Kais and Pablo Serra

Advances in Chemical Physics, Volume 125, 1-100 (2003)

Juan Pablo Neirotti, Math, Aston University

Pablo Serra, Physics,  U.  Cordoba

Physical Review Letters, 79, 3142 (1997)





Quantum Rabi Model
• Two-level system interacting with a bosonic mode:

• Second order quantum phase transition in the limit ∆/𝜔0 → ∞. 

• For g defined as 𝑔 = 2𝜆/ 𝜔0∆, there is a phase transition around 
𝑔 = 1.

• For 𝑔 < 1, the spin system is frozen in its ground state. 

• For 𝑔 > 1, the spin system points along the x-axis and the 
environment is in a super-radiant phase.

Bilal Khalid

They  report an experimental demonstration of a QPT in the 

QRM using a 171Yb+ ion in a Paul trap.



Quantum Rabi Model
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Quantum Rabi Model

Exact

RBM

N = 10,12,14,16,24

N = 10,12,14,16,24

• Number of qubits:

• 4 qubits for visible units (n)

• 8 qubits for hidden units (m)

• 12 ancillary qubits (n+m)

• Number of gates:

• 12 single qubit rotations 
(n+m)

• 32 Controlled-Controlled 
rotations (n×m)

• 192 X (bit-flip) gates (6×n×m)

• Total ~ 240

• Number of iterations = ~ 40,000 
for each g value

Shree Hari 

Sureshbabu



Finite-size scaling

Normal Phase

𝒈𝒄 = 𝟏. 𝟎𝟎𝟎𝟎𝟖



Finite-size scaling
Superrradiant Phase

𝒈𝒄 = 𝟎. 𝟗𝟗𝟗𝟗𝟔



Renormalization Group (RG) and  Machine Learning
● A good understanding for the powerful  representation 

and classification of neural networks is still  missing!

● In physics, RG introduced by Wilson has provided for 
effective coarse grain descriptions of Hamiltonians

● Maps that retain partition functions are used in RG. Exact 
mapping to RBM hasn’t been solved for beyond one-d 
Ising chains. The hidden layer in RBM samples coarse 
description of RG. Approximate solutions are likely to 
reveal interesting details about learning near critical points 
in general.

● Relative entropy over the layers of the neural network 
might provide for a better theoretical understanding about 
the strengths and limits of neural networks in terms of 
training time and achievable accuracy for unsupervised 
learning

Deep Learning and  Renormalization 

Group Flow

Raja Selvarajan Sangchul Oh



Quantum Computing for Open Quantum Systems

Andrew Hu



A=System of interest  B= Bath, Environment, 

Von Neumann Equation

Focusing on the system A

Unitary Hamiltonian Evolution Dissipator

Quantum Master Equation
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Quantum State Classifications and Tomography
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Junxi Li

Rishabh Gupta

Sumit Suresh Kale



Blake Wilson

ECE-Purdue

arXiv:2105.02396, (2021)

https://arxiv.org/abs/2105.02396


Conclusion
• Restricted Boltzmann Machine (RBM) can be used to perform electronic structure

calculations (ground and excited States) with chemical accuracy for molecules and materials:

H2, H2O, LiH, h-BN, graphene, Molybdenum disulfide(MoS2) and Tungsten disulfide (WS2)

• The number of qubits required scales as O(visible=m hidden=n), the complexity of the gates

turns out to be O(mn) for one sampling. So, we have quadratic resource requirements

(circuit width, circuit depth, parameter count). We have a lower bound on the number

successful sampling.

• FSS combined with RBM can be used to calculated quantum critical parameters and

quantum phase transitions.

• We trained the network on various flavors of computation using not only a classical

computer, Qasm backend quantum simulator in Qiskit but also a real IBMQ machine (IBM

Sydney and IBM Toronto) with the objective to see the performance of the algorithm on

actual NISQ devices.

• In all flavors of computation our algorithm demonstrated very high accuracy when compared

to the exact values obtained from direct diagonalization.



Quantum Information and Quantum 

Computating for Complex Chemical Systems 

https://www.chem.purdue.edu/kais/
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